ETH BIRL

Bio-Inspired Robotics Lab
Prof. Dr. Fumiya lida

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Semester Paper

Evolutionary Algorithm for
Robotic Body Extension

Autumn Term 2014

Supervised by: Author:
Luzius Brodbeck Maria Veiga

Contents

Abstract iii
1 Introduction 1
2 Encoding 3
2.1 Stochastic based generation (SBG). 3
2.2 L-Systems 4
2.2.1 Motivation 4

2.2.2 TImplementation o oL 4

3 Simulation 7
3.1 Genetic Algorithm L o 7
3.1.1 Enforcing diversity oL 7

3.1.2 Individuals 8

3.1.3 Genetic Operators 8

3.1.4 Fitness Function 9

3.2 Otherchanges. 9

4 Results & Discussion 11
4.1 Enforcing diversity 11
4.2 Numerical case studies o oL 12
4.2.1 Usingrotations Lo 12

4.2.2 Reaching targets oo 14

4.3 Comparison between SBG and L-systems 16

5 Conclusion 17
5.1 Further developments 17

A Algorithm manual 19
A.1 Simulation workflow 19
A.2 Description of the functions L. 19

B Fitness Function 21
Bibliography 22

ii

Abstract

In this project a genetic algorithm is used for evolutionary design of cube structures
with the main objective to reach an arbitrary point in space. The main focus of
this project is to bridge the gap between the simulation and the physical construc-
tion of these structures. For this purpose, different ways to represent a building
plan for these are explored, namely, a stochastic based generation (SBG) approach
and Lindenmayer systems (L-systems) are considered. Both methods are shown to
converge for targets with a moderate Cartesian distance, however, it is shown that
the L-systems outperform the SBG approach for more distant targets.

iii

Chapter 1

Introduction

Biological systems with the ability to grow have a greater adaptive power, this is
one of the reasons why they are able to adapt to different environments and perform
more complex tasks. Thus, a robot that can grow different parts is very appealing
due to its autonomy and adaptive power in uncertain environments or possibility
to perform new tasks [1].

The platform available for this project is a 6 DOF robot arm with the ability to
use hot melt adhesives (HMA) to glue simple elements together [2]. The objective
is to form arbitrarily complex structures that, when connected to the main body,
add or increase the functionality of the robot. The robotic arm building a simple
2-D structure can be seen in figure 1.1.

Figure 1.1: Robotic arm building a structure.

This project continues work that has been done at the Bio Inspired Robotics Lab
(BIRL). Namely, in [3], a genetic algorithm is used to optimize a structure that
reaches a point in space that the robot itself wouldn’t be able to reach. This is
done by placing an initial cube at the origin and adding cubes arbitrarily to one of
the faces, repeating this recursively by randomly choosing an available cube. Then,
through mutations and crossovers, new branches are added to the structure. An
example of the structure that can be generated is shown in figure 1.2, detailing an
initial structure and an added branch through mutation.

Chapter 1. Introduction 2

(a) Initial structure (b) With added branch

Figure 1.2: Structure generated in [3], featuring an initial structure and a added
branch through mutation

In [4] major improvements to the algorithm are done such as reinforcement, stress
and displacement analysis, and obstacle avoidance.

The main goal of this project is to bridge the gap between the simulation and the
physical construction of a structure. In particular, the approach taken in this project
is to find and optimize building plans (that encode the structures implicitly) such
that the robot arm can interpret them and build the physical structures accordingly.
The main content of this report is spread over chapters 2 - 4. Chapter 2 describes the
two methodologies used to generate the building plans of structures. In chapter 3,
the optimization algorithm is introduced (Genetic Algorithm) and the changes to
the evolution simulation are presented. In chapter 4, the results obtained are ana-
lyzed and the two methodologies used are compared. Finally, in chapter 5 closing
remarks are given in addition to further developmental ideas.

Chapter 2

Encoding

One of the challenges of the transition between the simulation and the actual build-
ing of the structure is that there is not a unique way to construct an evolved struc-
ture. In previous works, the subject of the optimization was the structure itself. In
this project, the optimization subject is changed to the building plan that encodes
the structure implicitly, thus optimizing a set of instructions that can be handed to
the robot. To achieve this, two distinct approaches to generate these building plans
are used:

e Stochastic based generation (SBG)
e [-System

In this chapter, we will describe the details of both methods.

2.1 Stochastic based generation (SBG)

Using this method, a building plan (thereby denoted as genome) is generated ran-
domly using the 5 different instructions detailed on table 2.1. The size of the
building plan is pre-defined according to the task.

Table 2.1: Construction instructions.

Instruction Meaning \ Probability
1 Add a cube 0.2
2 Shift structure in positive y-direction 0.2
3 Shift structure in negative y-direction 0.2
4 Shift structure in positive x-direction 0.2
5 Shift structure in negative x-direction 0.2

In figure 2.1 it is shown the impact of each instruction applied to a structure gen-
erated by the SBG method.

The inclusion of an instruction that rotated the structure was also considered in
order to produce bridge like structures, as shown in figure 2.2 where two structures
are compared: one using a rotation and one without rotation. However, due to the
added complexity to the structure in a 3D setting, this approach was not explored
further.

Chapter 2. Encoding 4

2.2 L-Systems

2.2.1 Motivation

Lindermeyer systems (L-Systems) are a formal grammar system introduced by the
botanist Lyndermeyer in the 18th century to define complex structures recursively
[5]. The central idea to L-systems is the idea of rewriting, where one can define
complex objects by successively replacing parts of a simple object using a set of
rewriting rules. The rewriting is carried out recursively.

The simplest type of L-Systems are the D0L-systems (deterministic and context
free). It is formally defined by the following triplet: (X, P, a), where ¥ = {s1, s9, 53, ...
is an alphabet, P is production map defined as P : ¥ — Y/, that maps each element
of ¥ to X’ consisting of production rules, « is the starting point of the iteration,
called the axiom. A simple example of a DOL-system can be seen in figure 2.3.
The use of this formality in robotics is not completely new, namely, this approach
has been explored in [6]. For this project, this approach could lead to good results
for two reasons:

e The impact of crossover and mutation rules are greater
e The storage efficiency of these rules, technically, we only have to store the set

of rules, the number of iterations and the starting seed

2.2.2 Implementation

For our problem, our L-system triple is defined as:
e ¥ = {’add a cube’, ’shift in +x’, ’shift in -x’, ’shift in +y’, ’shift in -y’}
e P:Y — X, where Y is generated randomly

e « is defined as adding a cube

Further, the number of iterations that are performed are fixed.

2.2. L-Systems

(b) Executing instruction 1 - adding a

cube.

(a) Initial structure

shift in neg-

(c) Executing instruction 2 - shift in pos- (d) Executing instruction 3

ative y-direction.

itive y-direction.

(e) Executing instruction 4 - shift in pos- (f) Executing instruction 5 - shift in neg-

ative x-direction.

itive x-direction.

Figure 2.1: Impact of each instruction on the structure generated by the genome:

(13115112141).

Chapter 2. Encoding 6

(a) (b)

Figure 2.2: Structure generated with possibility of rotation and structure without
possibility of rotation

/\

/ N\

s N

I\

AN
b P

o
/N
o o T T T T T ®

Figure 2.3: Example of the evolution of a DOL-system with ¥ : {a,b}, P(a) — ab
and P(b) — bb and starting axiom « = a after 3 iterations

Chapter 3

Simulation

In this chapter, the optimization algorithm is introduced and explained. Further-
more, the changes to the previous simulation, presented in [4], are denoted.

3.1 Genetic Algorithm

The Genetic Algorithm (GA) is based on the idea of evolution present in nature.
It is a search heuristic used find and optimize solutions. A solution is called an
individual and a set of solutions a population. Each individual is evaluated with
respect to a fitness function, that aims to give an indication to how good the solution
is. The individuals who are most fit are selected to produce offsprings for the next
generation (iteration of the algorithm).

The genetic algorithm consists of the following main steps:

1. Initialize population randomly
2. Measure fitness of all individuals
3. Generate new population (applying elite selection, crossover and mutation)

4. Tterate until stopping criteria is reached

3.1.1 Enforcing diversity

The efficiency of the GA can be very dependent on its initial population [7], thus
a parameter of similarity was introduced, that forced the initial population to be
distinct.

Let A: {set of cube coordinates in structure A}, B: {set of cube coordinates in
structure B} and | - | denote cardinality, then the similarity parameter is defined as:

|AN B

——— x 100 3.1
win([A], | B]) (31)

similarity % =

For example, in the limit case where the similarity parameter is set to 100%, only
the organisms that are exactly the same are excluded. On the other hand, when
the similarity parameter is set to 20%, all the organisms that score 20% (or more)
of similarity are excluded. This impact of this parameter is that when it is set to
be low, only organisms that are very different are allowed in the initial population.

Chapter 3. Simulation 8

3.1.2 Individuals
Stochastic based generation (SBG)

The individuals were the building plans - sequences of integers where each inte-
ger corresponds to an instruction. The number of cubes per organism was pre-
determined.

L-system based encoding

The individuals were the L-system rules, which determine how an instruction trans-
forms after one iteration.

3.1.3 Genetic Operators

For both of the simulations, we induced mutation and crossover only.

Stochastic based encoding

The mutation was done in the following way:

Given a genome, each instruction has a predefined probability! to mutate. The
genome is iterated through and the positions to mutate are determined. There are
3 mutations that occur with equal probability:

e Change the instruction - e.g: 1 — 3
e Duplicate the instruction - e.g: 1 — 11
e Delete the instruction - e.g: 1 — |]

The crossover operation was done in the following way: Two individuals are picked
randomly. Then, a random point is chosen in each genome to determine where the
individual’s genome gets cut. The remaining parts get merged together to form a
new individual with a mixed genome, possibly with a different length. An example
of this operation can be seen below:

Genome A: 111%1411

Genome B: 1312%151

This example yields a new organism with genome: 11121151

L-system based encoding

The mutation was done in the following way:
Given a set of rules, a subset of these rules are randomly chosen for mutation. The
possible mutations, having chosen the rule, are:

e Change the instruction - e.g: 1 — 3
e Duplicate the instruction - e.g: 1 — 11
e Delete the instruction - e.g: 1 —]

Furthermore, there is the option to bias the mutation towards growth, by increasing
the probability of the instruction that adds a cube.

The crossover operation was done in the following way: Two organisms (sets of
rules) are picked randomly. Then, a random subset of rules of organism A is chosen.
The rules chosen from organism A are substituted by the rules in organism B. The

Lor our simulations we set p = 0.2

9 3.2. Other changes

new set of rules, obtained by mixing the rules from organism A and B form a new
organism. For example, consider the following genome with the rules to be swapped
in bold face:

Genome A: rule 1.1, rul(Ta 1.2, rul(Ta 1.3

Genome B: rule 2.1, rulﬁ 2.2, rul(Te 2.3

This example yields a new organism with genome: rule 1.1, rule 2.2, rule 2.3

3.1.4 Fitness Function

The fitness function from the previous work of [4], presented in equation 3.2, was
slightly adjusted to allow for bigger structures, namely, the negative weight given
to amount of cubes was decreased and incorporated stricter stress constraints. The
inclusion of 'number of operations’, which includes the information on how much
work the robot should do, is also possible but our results were not measured with
this parameter.

fitness = Wopistance X (1 — Distance) — Wnumcubes X NumCubes — ...
—Witazstress X MaxStress — WarazDisplacement X MazDisplacement + ...
+WNumConnections * NumO fConnections
(3.2)
The closest to 100, the fitter the structure is. The full details of the equation can
be found in appendix B.

3.2 Other changes

e Connected structures Solutions that represent disconnected structures do
not make sense in our problem, so the connectiveness of the structures was
enforced in the following way: if a shift instruction is executed and the next
instruction leads to a disconnected structure, a cube is placed to avoid that
(and the building plan adjusted accordingly);

e Tumble check A stability check was added to determine whether the struc-
ture would tumble or not by calculating the center of mass of the structure;

e Surface of support A surface of support was added to approximate to what
would happen in a real setting, where only a part of the structure has ground
support;

e Memory reduction For larger structures, the memory allocation became a
problem in particular due to the Truss matrix generation in the stability check
part of the simulation. So the simulation now only stores the fittest individual
from each generation and matrices that consist of integers are stored as singles;

e The code was re-factored to introduce a modular structure.

Chapter 3. Simulation

10

Chapter 4

Results & Discussion

In this section, results from various case studies will be reported and discussed.
The task is to reach an arbitrary point in a Cartesian space, described by (x,y, 2)
coordinates. For example, as shown in figure 4.1, the target is set to be (10, 10, 10).

Figure 4.1: Structure starting from (0,0,0) with the target, represented by the
golden block, set to be (10,10,10)

4.1 Enforcing diversity

The similarity parameter is calculated as described in Chapter 3, where the organism
is rejected if it is > x % similar to the previous organism. In the limit case of 100%
similarity, we only discard organisms that are exactly the same. A simulation run is
performed to gain insight on the impact of this similarity measure. The numerical
results can be found on table 4.1.

The hypothesis is to have a better coverage of the solution space if differences are
enforced, because this way a very similar initial population is avoided. A plot for
each < % similarity is shown in figure 4.2 and these show:

e The variation across the simulations seems to be smaller when differences are

11

Chapter 4. Results & Discussion 12

enforced. This means that the simulation is less impacted by a poor choice of
initial population.

e There is a quicker convergence, on average, using some difference enforcement.
For example, if we observe the generation where more than 50% of the sim-
ulation runs are above fitness level 70, we obtain for similarity level of 40%,
generation 25, whereas for no difference enforcement, generation 34.

Table 4.1: Varying the similarity parameter, with the following parameters for the
simulation: Maximum generation: 60, target to reach: (10,10, 15), population size:
20, averaged over 10 runs.

Similarity Fitness Average \ Fitness Std deviation

20% 85.91 6.32
40% 84.19 5.57
60% 82.71 6.96
80% 84.25 8.45
100% 85.29 9.08

4.2 Numerical case studies

In this section, results from various case studies will be reported and discussed. The
task is to reach an arbitrary point in space, using the encoding methods described
previously.

4.2.1 Using rotations

Although this encoding method was not carried through to completion during the
project, the results and reasons for its exclusion will be reported and discussed for
the sake of completeness.

Parameters:

e 2D setting

e 30 generations

e 10 organisms per generation
e 5x5 surface of support

e target: (0, 10, 10)

Although this method would provide a more complete coverage of the solution
space (by allowing bridge like structures), the physical construction of these objects
would be more complex. The center of rotation has to be well determined and
the stability of the structure during the whole process has to be guaranteed. This
also adds significant computation cost because although the final structure might
be feasible, the construction process is not necessarily guaranteed to be feasible at
each step, as shown in figure 4.3. An intermediate check was introduced for each
operation executed and this made the simulation significantly slower, moreover,
the generalization to 3D would not be straightforward thus investigation on this
approach was halted.

13 4.2. Numerical case studies

o n 20 40 50 60 o 0 20 40 50 60

30 30
Generation § Generation #

(a) Similarity 20% (b) Similarity 40%

L] o 20 G.m::.‘m . 40 50 &0 L] 0 20 G.mi:m . 40 50 &0
c¢) Similarity 60% d) Similarity 80%
Yy

0 o 0 a0 50 &0

30
Generation ¥

(e) Similarity 100%

Figure 4.2: In each of the plots we fixed the similarity parameter, each plotted
line represents a simulation run and the relation between the generation number
(x-axis) and the fitness value of the fittest organism (y-axis)

Chapter 4. Results & Discussion 14

(a) Step 6 (b) Step 7 (c) Step 12 (d) Final structure

Figure 4.3: Stepwise construction of the shape shown in d). Given that the lowest
part of the figure is the only part touching the ground, it is seen that the structure
generated in 7 is not stable, in particular, its center of mass falls outside of the base.

4.2.2 Reaching targets

In this subsection, the task to reach different targets is investigated. In particular,
in the first case presented, a structure is constructed to reach a target that is located
in the following coordinates (20, 20, 20), defined on a Cartesian plane. In the second
case, the task is to reach a target located in the coordinates (25, 40, 40).

Reaching target (20, 20, 20)
The parameters for this simulation run are defined below:
e 100 generations
e 20 organisms per generation
e 15x15 surface of support
e Averaged over 10 runs
e Similarity fixed at 40%

The results of this simulation can be seen in table 4.2 and the structures generated
by the SBG method and L-systems method can be visually observed in figure 4.4
and 4.5 respectively.

Table 4.2: Average fitness of the fittest organism in the terminal generation reaching
the target (20, 20, 20)

Population number \ SBG L-system
10 | 5424 80.62

15 4.2. Numerical case studies

AT)

i

A
e

% ®
“"%\\ i A A

(a) Generation 1 (b) Generation 20 (c) Generation 60 (d) Generation 100

Figure 4.4: Fittest organism per generation using SBG, reaching target (20, 20, 20).

(a) Generation 1 (b) Generation 20 (c) Generation 60 (d) Generation 100

Figure 4.5: Fittest organism per generation using L-Systems, reaching target
(20,20, 20).

Reaching target (25, 40, 40)

e 100 generations

20 organisms per generation

30x30 surface of support

Averaged over 10 runs

Similarity fixed at 40%

Reaching target (25, 40, 40) was significantly harder due to the distance from sur-
face of support. Both methods showed poor convergence. Due to this poor con-
vergence, the L-system method was slighly changed to introduce a growth bias in
the mutation, this means that for each mutation there is a fixed probability that
the instruction ’add a cube’ is added to the rule '. This slight bias lead to better
results, as shown in table 4.3.

lgrowth bias probability set to 0.4

Chapter 4. Results & Discussion 16

Table 4.3: Comparison between different methods, including a growth bias in the
L-systems encoding

Parameters \ SBG L-Systems Biased L-Systems
Average fitness 42.45+4.58 55.21 +14.02 81.85+7.33
Time taken (s) 635.58 1409.87 9713.50
Memory allocation (GB) 0.6 0.6 0.8

4.3 Comparison between SBG and L-systems

Referring to the results displayed in the section above and in table 4.3, a few main
observations can be drawn:

e For targets that are close, both methods seem to converge and perform rea-
sonably well

e For targets that are further away, the L-systems approach outperformed the
SBG

e The introduction of a growth bias influenced the convergence positively, which
comes from the idea to start from small structures and allow them to grow.

Chapter 5

Conclusion

This project details the theory and process to achieve the generation of building
plans that can be passed to the robot to build structures that add functionality and
adaptability to it. In particular, in this project, instruction sets that encode the
building method of structures were generated successfully using a genetic algorithm,
using two encoding methods: SBG and L-systems).

The first approach used was the SBG method. The convergence of the algorithm
using rotations was good in 2-D but the generalization to 3-D was not efficient nor
feasible, so this approach was abandoned, reducing the number of instructions to
five, as described on table 2.1.

The second approach used was the encoding using L-systems with the same set of
instructions. Using this method, the building plan was not generated sequentially
but based on a Production map and a fixed number of iterations. A growth bias
option was also added.

One of the main challenges for the convergence of solutions, in particular when
using the L-systems encoding was that the structures were often disconnected, a fix
was introduced to enforce connectiveness of these.

Both methods were used in the context of a genetic algorithm to determine the
optimal solution. A parameter of similarity was also introduced in order to prevent
initial generations being too similar. The observed impact of this parameter was
a smaller variance across multiple runs and often, less generations were needed to
reach a particular fitness value.

From the numerical case studies, the L-systems encoding seems to be more robust
and perform better in comparison to the initial SBG method. Although positive
results were obtained, these were only done in simulation. The feasibility of these
building plans should still be studied.

5.1 Further developments

One clear problem of both of these approaches is the fact that, most likely, the
optimal solution can not be obtained using these encodings because of the simplicity
of the instructions. Omne drawback, pointed out earlier in this report, was the
inability to build bridge like structures. This can have a significant influence on
where the center of mass of a structure is and, consequently, in its stability. One
attempt to overcome this was the use of rotations but it was found to not be
very efficient. Another way could be using auxiliary structures when building the
structure as detailed on figure 5.1.

Another issue that was detected was that a genome often contains redundant opera-
tions, leading to a building plan that is not efficient, so these sequences of redundant

17

Chapter 5. Conclusion 18

]
:
ol

[T 1]

—— N

e “SREERss

Figure 5.1: Building the structure on the left hand side with the use of auxilary
structures (denoted in red) that are not connected to the main structure and that
can be removed afterwards.

operations could be detected and substituted. For example, the following sequence:
‘move left” 'move left” 'move right’ could equivalently be 'move left’.

There are different fronts that could be explored, namely, physical constraints of
the robotic arm, effective parameter search to determine optimal parameters such
as mutation and crossover rate, growth bias rate, population size and generations.
From the L-systems approach, there are more interesting L-systems, namely context
dependent ones where the production map P of one instruction depends on the
instructions around it. For example, this could be useful for structures that are not
solely composed by cubes but also actuators (or other elements)

Appendix A

Algorithm manual

This appendix aims to provide an overview of the algorithm and simulation code
used in this project.

A.1 Simulation workflow

The simulation is started with the file initialization.m, where the default pa-
rameters are loaded from two files: initPars.m and algoPars.m - establishes the
parameters for the algorithm, namely, production rule, activating obstacles, render-
ing.

The user has the choice to overwrite some of the initial default parameters. The
algorithm is then run based on the established parameters. A structure containing
a list of organisms (fittest organism per generation) and their corresponding fitness
is obtained after the algorithm run and can be plotted and further explored.

runSimulationLsystem

initialPopulation loop until maxGeneration reached
Initialization.m

| generateRule | | mutationRule |
—
| encodelsystem | | encodelsystem | encodeLsystem

algoPars buildMethod | buildMethod buildMethod
checkOrgStability checkOrgStability checkOrgStability

or

Algorithm run

v runSimulationNormal

organisms w— initialPopulation loop until maxGeneration reached

[oo || oo] [owow]
buildMethod | buildMethod | buildMethod
checkOrgStability checkOrgStability checkOrgStability

Figure A.1: Code workflow diagram.

A.2 Description of the functions

initParm.m - establishes the parameters for environment of the simulation, such
as number of generations, population, target, obstacles

19

Appendix A. Algorithm manual 20

algoParm.m - establishes the parameters for the algorithm, namely, production
rule, activating obstacles, rendering
initialization.m - file to be called to start the simulation

Production rule specific

Stochastic based generation

runSimulationNormal.m - contains the genetic algorithm evolving the building
plans generated randomly

encode.m - generates the genome, returns a string

buildMethod.m - interprets a genome and produces an organism represented by
the coordinates of each cube

mix.m - crossover operation for the SBG method

mutation.m - mutation operation for the SBG method

L-systems

runSimulationLsystem.m - contains the genetic algorithm evolving the building
plans encoded by rules

generateRule.m - generates a set of rules to transform the alphabet
encodeLsystem.m - given a set of rules, generates the genome

crossRules2.m - crossover operation for the L-system method, by mixing complete
rules

mutationRule.m - mutation operation for the L-system method

crossRules.m - crossover operation for the L-system method (unused)
crossOverRule.m - crossover operation for the L-system method (unused)

Common functions

checkFitness.m - ranks the organisms by descending fitness
compareStructures.m - compares the similarity between two structures
fitnessFunction.m - calculates the fitness of an organism

genecheck.m - checks if the genome is still buildable after crossover or mutation
operations

checkOrgStability.m - encompasses the various stability checks
collisionCheck.m - checks for collisions of the structure against objects or target
stressCheck.m - checks for the stresses generated in the structure
tumbleCheck.m - checks if the structure will tumble

ST.m - Truss analysis

Rendering

makeEvolutionMovie.m - records a simulation run
createcube.m - creates a cube
renderStructure.m - creates a plot with the structure

Appendix B

Fitness Function

As quoted from the work done in [4]:

fitness = Whpistance X (1 — Distance) — Wnumcubes X NumCubes — ...
—Witazstress X MaxStress — WarazDisplacement X MazxzDisplacement + ...
+WNumConnections * NUTTLOfCOTLTLGCtiOHS
(B.1)

Distance this value is normalized (current distance divided by distance from
the origin to the target) so it is in range from 0 to 1. Since 1 corresponds to
the highest distance from the target, 1 - Distance was used in fitness function.

e NumberOfCubes is not a normalized value so it can be any number bigger
than 1. It is desirable that structure has less cubes and that is why there is a
negative sign in front of NumberOfCubes parameter.

o MaximumDisplacement can be any number from 0 to an upper limit de-
termined by the mazimum stress in the structure.

o MaximumStress value is normalized (maximum stress is divided by critical
stress) and it is in range from 0 to 1.

o NumberOfConnections the Value of this parameter is normalized with 6 X
NumberOfCubes.

21

Bibliography

[1]

2]

[3]

[4]

P. Funes, J. POLLACK: FEwvolutionary Body Building: Adaptive Physical De-
signs for Robots. Artificial Life Volume 4, Number 4 (1998), p. 337-257.

L. BRODBECK, L. WANG, F. IIDA: Robotic body extension based on Hot Melt
Adhesives. IEEE International Conference on Robotics and Automation (2012),
p. 4322-4327.

J. SEITZ: Autonomous design of modular robot extensions using an evolution-
ary algorithm. BIR Lab, Swiss Federal Institute of Technology Zurich

T. NovkoviC: Extension of an evolutionary design algorithm to complex tasks.
BIR Lab, Swiss Federal Institute of Technology Zurich

G. ROZENBERG,A. SALOMAA: The mathematical theory of L systems. Aca-
demic Press, New York, (1980), chapter 4

S. HOrRNBY, J. POLLACK: Fwolving L-systems to generate virtual creatures.
Computers and Graphics Volume 25, Number 6 (2005), p.1041-1048.

F. SIMEONI: Ewvolutionary optimization of interplanetary trajectories: improve-
ments from initial diversification. Journal of Aerospace Engineering (2011), p.
1277-1288

22

	Abstract
	Introduction
	Encoding
	 Stochastic based generation (SBG)
	L-Systems
	Motivation
	Implementation

	Simulation
	Genetic Algorithm
	Enforcing diversity
	Individuals
	Genetic Operators
	Fitness Function

	Other changes

	Results & Discussion
	Enforcing diversity
	Numerical case studies
	Using rotations
	Reaching targets

	Comparison between SBG and L-systems

	Conclusion
	Further developments

	Algorithm manual
	Simulation workflow
	Description of the functions

	Fitness Function
	Bibliography

