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Compressed Sensing: Rough Formulation

Simple Version:

Knowing that an n-dimensional vector x has very few nonzero
components (say k), but not knowing the locations of the nonzero
components,

@ Is it possible to recover x exactly by making m < n noise-free
linear measurements?

@ Is it possible to recover x approximately by making m < n
noisy linear measurements?
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Precise Formulation

Define the set of k-sparse vectors in R™:
S = {z € R" : [supp(a)| < k.

where supp(z) = {i : z; # 0} is the support of z.

Is it possible to choose (a) an integer m < n, (ii) a matrix
A e R™*" and (iii) a “demodulation” map A : R™ — R", such
that

o A(Ax) =xVr € Ei?

o |A(Az +n) — z|| < ¢||n|| Y € Xk, where ¢ is a “universal”
constant that does not depend on x or n?

Note: Measurements are linear, but demodulation can be hlghlywlmm
nonlinear. -
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Rough Formulation (Cont'd)

Suppose z € R™ is "nearly k-sparse,” though not exactly so.
Suppose we have m < n exact or noisy linear measurements of x.
Is it possible to recover a k-sparse approximation of x7?

Signal Compression Interpretation: Suppose x represents the
Fourier coefficients of a periodic signal, and only k coefficients are
“significant.” Can we construct a good approximation of x
without knowing which Fourier coefficients are significant?

@l)ALLAS
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Precise Formulation (Cont'd)

Define the k-sparsity index of = in the norm || - ||.
oxl |- 1) = inf{lle — 2] : 2 € i}

Note: oy (z,| - ||) depends on the norm || - ||.

Question: s it possible to choose an integer m < n, a matrix
A e R™" m <« n, and a “"demodulation” map A : R™ — R",
such that

|A(Az) — z||2 < Coox(z, ] - ||1) Vo € R™?

IA(Az +n) =l < Coog(x, || - 1) + Callnll2?
for "universal” constants Cy and C?
@I)ALLAS
Note mixture of ¢1- and l3-norms! More on this later. -~ - - ...
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Restricted Isometry Property (RIP)

Note: Not most general result, but easy to state!

A matrix A € R™*" is said to satisfy the RIP (Restricted Isometry
Property) of order k with constant dy, if

(1= d)l[ull3 < [[Aul3 < (1 +0)llull3, Yu € Sy

Interpretation: Every set of k or fewer columns of A is “nearly
orthonormal.”

Precisely, if we take columns of A from the set J C {1,...,n},
call the submatrix Ay, then all eigenvalues of Af]AJ lie in the
interval [1 — 0, 1 + 6] whenever |J| < k.

@ml LAS
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Candeés-Tao Result on #;-Norm Minimization

Theorem: (Candes-Tao (2005); see also Donoho (2006)).
Suppose A € R™*"™ satisfies the RIP of order d9, with constant
dor < V2 —1, and that y = Ax for some = € ¥. Define

Z = argmin ||z||; s.t. y = Az.
4

Then z = x.
Note: Problem at hand is a linear programming problem.

Exact recovery of sparse vectors, if only we can design a matrix A
that satisfies RIP.

@I)ALLAS
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Designing Matrices with RIP

(Candes-Tao (2005)): Choose columns of A to be realizations of
m-~dimensional zero-mean Gaussians. Then with “high probability”
(which can be computed), A satisfies RIP.

Difficulty: Resulting A matrix has all nonzero entries with
probability one — implementation issues!.

(Achlioptas (2003)): Choose columns of A to be realizations of
i.i.d. (independent and identically distributed) random process
{X:} assuming values in {—1,0,+1}, with

Pr{X; = -1} =Pr{X; =41} =€, Pr{X; =0} =1 — 2e.

Benefit: Resulting A matrix is very sparse, no implementation
issues, and also satisfies RIP with “high probability.” Wpoairas

M. Vidyasagar Near Ideal Behavior of a Modified Elastic Net Algorithm



Introduction
Some Known Results

Nt Rl Noisy Measurements
An Open Problem(?) Yy

References

Outline

© Some Known Results

@ Noisy Measurements

@ DALLAS
[m] = = ¢

M. Vidyasagar Near Ideal Behavior of a Modified Elastic Net Algorithm




Introduction
Some Known Results
New Results
An Open Problem(?)

Noisy Measurements

References

Defining Near ldeal Behavior

Suppose x € X, and we measure y = Ax + 1, where ||n]j2 <,
where € is known. An “oracle” would know the support set J of z,
and then (in obvious notation)

y= Az +.
So estimate and estimation error of the oracle are
b= (A5A,) " Ay,
& —x=(A5A;) " Al
| — z||2 < const.e.

An algorithm is near ideal if, without knowing the support of x, H‘_‘mm
achieves an error proportional to ¢, for all x € ¥y -
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A General Theorem

Theorem: (Candés-Plan (2009); see also DDEK (2012)). Suppose
A € R™*™ satisfies the RIP of order d9;, with constant

ok < V2 —1, and that y = Az 4 1) for some z € R” and n € R™
with ||n]|2 < e.

& = argmin ||z|]; s.t. [y — Az|2 < e
z

Then (@1l 1)
A~ O T, || |1
— < Cop——"——"% + Che,
|2 —z[2 < Co N 2€
where
1+ (V2 —1)dy 41 + 0y,
Co=2 , Oy = .
1-— (\/§ + 1)(52k 1-— (\/§ + 1)52k @l)ALLAs
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LASSO and the Elastic Net Algorithms

The problem
min [|z[ly st. [y — Azfls < e

is roughly equivalent to LASSO (Tibshirani (1998)). Candés-Plan
result shows that “LASSO exhibits near ideal behavior.”

Better numerical behavior compared to LASSO results from the
Elastic Net (EN) algorithm (Zou-Hastie (2005)):
min[(1 — p)l|zlly + pllz|3] st. [ly — Azll2 < e

Question: Does EN algorithm also have “near ideal behavior”?

@l)ALLAS
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A Modified Elastic Net Algorithm

Difficulty: The quantity

(1= w2l + =3
isn't a norm!

Modified Elastic Net (MEN) Algorithm:
minf(1 —p)l[z[ls + pllz]2] st [ly = A=}z < e
Compare with EN:

min[(1 = p)|[lls + pllzl3] st. y - Azl <.

@ DALLAS
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Near ldeal Behavior of MEN Algorithm

Theorem (MV CDC 2013): Suppose A € R™*" satisfies the
RIP of order 2k with constant dy; < V2 — 1, and that y=Ax+n
for some z € R"™ and n € R™ with [|5||2 < e. Define

IMEeN = argmin || z]|, s.t. ||y — Az|2 < e
z

Then, for p sufficiently small, there exist constants Cp , and C3
such that Then

k(@ [ -1)

o
ImeEN — )2 < Ch
s — ol < o, 2L

Moreover when 1 = 0 these reduce to earlier constants.

1+ (V2 —1)6a 4T+ 0o,
Co =2 Cy = .
1— (\/ﬁ + 1)5219 1— (\/5 + 1)52k @l)ALLAS
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A Useful Corollary

Theorem: Suppose A € R™*™ satisfies the RIP of order do5 with
constant da;, < v/2 — 1, and that y = Az for some x € ). Define

& = argmin ||z||, s.t. y = Az.
4

Then & = x provided p is sufficiently small.

In short, there are infinitely many norms || - ||,, that permit exact
recovery of sparse signals.

@ DALLAS
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Advantages of MEN Algorithm

Minimizing || - ||1 is a quadratic program. What are the advantages
of minimizing|| - ||.?

o ||- ||, is strictly convex, whereas || - ||1 is not. So MEN
algorithm always produces a unique solution.

@ EN has better numerical behavior than LASSO.
o LASSO uses fewer features.
e EN produces lower errors.

Does MEN outperform LASSO?

No theoretical results as yet, but on lung and ovarian cancer data,
MEN combines accuracy of EN with sparsity of LASSO. @
DALLAS
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Sensing with ¢5-Norm Sparsity Index

With exact measurements, earlier conclusion becomes

|A(AZ) =zl < Coop(a, || - [|1)-

Theorem: (CDD (2009)) Suppose there exist an integer m, a
matrix A € R™*" and a function A : R™ — R" such that, for
some constant Cp, we have

[A(Az) — x|z < Coo(z, | - [2)-
Then m > an.
No compression is possible using £2-norm sparsity index.
Open Problem: Can we replace || - ||2 on right side by || - | @DAHA%
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