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Compressed Sensing: Rough Formulation

Simple Version:

Knowing that an n-dimensional vector x has very few nonzero
components (say k), but not knowing the locations of the nonzero
components,

Is it possible to recover x exactly by making m� n noise-free
linear measurements?

Is it possible to recover x approximately by making m� n
noisy linear measurements?
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Precise Formulation

Define the set of k-sparse vectors in Rn:

Σk = {x ∈ Rn : |supp(x)| ≤ k},

where supp(x) = {i : xi 6= 0} is the support of x.

Is it possible to choose (a) an integer m� n, (ii) a matrix
A ∈ Rm×n, and (iii) a “demodulation” map ∆ : Rm → Rn, such
that

∆(Ax) = x ∀x ∈ Σk?

‖∆(Ax+ η)− x‖ ≤ c‖η‖ ∀x ∈ Σk, where c is a “universal”
constant that does not depend on x or η?

Note: Measurements are linear, but demodulation can be highly
nonlinear.
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Rough Formulation (Cont’d)

Suppose x ∈ Rn is “nearly k-sparse,” though not exactly so.
Suppose we have m� n exact or noisy linear measurements of x.
Is it possible to recover a k-sparse approximation of x?

Signal Compression Interpretation: Suppose x represents the
Fourier coefficients of a periodic signal, and only k coefficients are
“significant.” Can we construct a good approximation of x
without knowing which Fourier coefficients are significant?
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Precise Formulation (Cont’d)

Define the k-sparsity index of x in the norm ‖ · ‖.

σk(x, ‖ · ‖) = inf{‖x− z‖ : z ∈ Σk}.

Note: σk(x, ‖ · ‖) depends on the norm ‖ · ‖.

Question: Is it possible to choose an integer m� n, a matrix
A ∈ Rm×n,m� n, and a “demodulation” map ∆ : Rm → Rn,
such that

‖∆(Ax)− x‖2 ≤ C0σk(x, ‖ · ‖1) ∀x ∈ Rn?

‖∆(Ax+ η)− x‖2 ≤ C0σk(x, ‖ · ‖1) + C2‖η‖2?

for “universal” constants C0 and C2?

Note mixture of `1- and `2-norms! More on this later.
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Restricted Isometry Property (RIP)

Note: Not most general result, but easy to state!

A matrix A ∈ Rm×n is said to satisfy the RIP (Restricted Isometry
Property) of order k with constant δk if

(1− δk)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δk)‖u‖22, ∀u ∈ Σk.

Interpretation: Every set of k or fewer columns of A is “nearly
orthonormal.”

Precisely, if we take columns of A from the set J ⊆ {1, . . . , n},
call the submatrix AJ , then all eigenvalues of AtJAJ lie in the
interval [1− δk, 1 + δk] whenever |J | ≤ k.
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Candès-Tao Result on `1-Norm Minimization

Theorem: (Candès-Tao (2005); see also Donoho (2006)).
Suppose A ∈ Rm×n satisfies the RIP of order δ2k with constant
δ2k <

√
2− 1, and that y = Ax for some x ∈ Σk. Define

x̂ = argmin
z
‖z‖1 s.t. y = Az.

Then x̂ = x.

Note: Problem at hand is a linear programming problem.

Exact recovery of sparse vectors, if only we can design a matrix A
that satisfies RIP.
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Designing Matrices with RIP

(Candès-Tao (2005)): Choose columns of A to be realizations of
m-dimensional zero-mean Gaussians. Then with “high probability”
(which can be computed), A satisfies RIP.

Difficulty: Resulting A matrix has all nonzero entries with
probability one – implementation issues!.

(Achlioptas (2003)): Choose columns of A to be realizations of
i.i.d. (independent and identically distributed) random process
{Xt} assuming values in {−1, 0,+1}, with

Pr{Xt = −1} = Pr{Xt = +1} = ε,Pr{Xt = 0} = 1− 2ε.

Benefit: Resulting A matrix is very sparse, no implementation
issues, and also satisfies RIP with “high probability.”
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Defining Near Ideal Behavior

Suppose x ∈ Σk, and we measure y = Ax+ η, where ‖η‖2 ≤ ε,
where ε is known. An “oracle” would know the support set J of x,
and then (in obvious notation)

y = AJxJ + η.

So estimate and estimation error of the oracle are

x̂ = (AtJAJ)−1AtJy,

x̂− x = (AtJAJ)−1AtJη,

‖x̂− x‖2 ≤ const.ε.

An algorithm is near ideal if, without knowing the support of x, it
achieves an error proportional to ε, for all x ∈ Σk.
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A General Theorem

Theorem: (Candès-Plan (2009); see also DDEK (2012)). Suppose
A ∈ Rm×n satisfies the RIP of order δ2k with constant
δ2k <

√
2− 1, and that y = Ax+ η for some x ∈ Rn and η ∈ Rm

with ‖η‖2 ≤ ε.

x̂ = argmin
z
‖z‖1 s.t. ‖y −Az‖2 ≤ ε.

Then

‖x̂− x‖2 ≤ C0
σk(x, ‖ · ‖1)√

k
+ C2ε,

where

C0 = 2
1 + (

√
2− 1)δ2k

1− (
√

2 + 1)δ2k
, C2 =

4
√

1 + δ2k

1− (
√

2 + 1)δ2k
.
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LASSO and the Elastic Net Algorithms

The problem
min
z
‖z‖1 s.t. ‖y −Az‖2 ≤ ε

is roughly equivalent to LASSO (Tibshirani (1998)). Candès-Plan
result shows that “LASSO exhibits near ideal behavior.”

Better numerical behavior compared to LASSO results from the
Elastic Net (EN) algorithm (Zou-Hastie (2005)):

min
z

[(1− µ)‖z‖1 + µ‖z‖22] s.t. ‖y −Az‖2 ≤ ε.

Question: Does EN algorithm also have “near ideal behavior”?
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A Modified Elastic Net Algorithm

Difficulty: The quantity

(1− µ)‖z‖1 + µ‖z‖22

isn’t a norm!

Modified Elastic Net (MEN) Algorithm:

min
z

[(1− µ)‖z‖1 + µ‖z‖2] s.t. ‖y −Az‖2 ≤ ε.

Compare with EN:

min
z

[(1− µ)‖z‖1 + µ‖z‖22] s.t. ‖y −Az‖2 ≤ ε.
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Near Ideal Behavior of MEN Algorithm

Theorem (MV CDC 2013): Suppose A ∈ Rm×n satisfies the
RIP of order 2k with constant δ2k <

√
2− 1, and that y = Ax+ η

for some x ∈ Rn and η ∈ Rm with ‖η‖2 ≤ ε. Define

x̂MEN := argmin
z
‖z‖µ s.t. ‖y −Az‖2 ≤ ε.

Then, for µ sufficiently small, there exist constants C0,µ and C2,µ

such that Then

‖x̂MEN − x‖2 ≤ C0,µ
σk(x, ‖ · ‖1)√

k
+ C2,µε.

Moreover when µ = 0 these reduce to earlier constants.

C0 = 2
1 + (

√
2− 1)δ2k

1− (
√

2 + 1)δ2k
, C2 =

4
√

1 + δ2k

1− (
√

2 + 1)δ2k
.
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A Useful Corollary

Theorem: Suppose A ∈ Rm×n satisfies the RIP of order δ2k with
constant δ2k <

√
2− 1, and that y = Ax for some x ∈ Σk. Define

x̂ = argmin
z
‖z‖µ s.t. y = Az.

Then x̂ = x provided µ is sufficiently small.

In short, there are infinitely many norms ‖ · ‖µ that permit exact
recovery of sparse signals.
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Advantages of MEN Algorithm

Minimizing ‖ · ‖1 is a quadratic program. What are the advantages
of minimizing‖ · ‖µ?

‖ · ‖µ is strictly convex, whereas ‖ · ‖1 is not. So MEN
algorithm always produces a unique solution.

EN has better numerical behavior than LASSO.

LASSO uses fewer features.
EN produces lower errors.

Does MEN outperform LASSO?

No theoretical results as yet, but on lung and ovarian cancer data,
MEN combines accuracy of EN with sparsity of LASSO.
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Sensing with `2-Norm Sparsity Index

With exact measurements, earlier conclusion becomes

‖∆(Ax)− x‖2 ≤ C0σk(x, ‖ · ‖1).

Theorem: (CDD (2009)) Suppose there exist an integer m, a
matrix A ∈ Rm×n and a function ∆ : Rm → Rn such that, for
some constant C0, we have

‖∆(Ax)− x‖2 ≤ C0σk(x, ‖ · ‖2).

Then m ≥ C2
0n.

No compression is possible using `2-norm sparsity index.

Open Problem: Can we replace ‖ · ‖2 on right side by ‖ · ‖µ?
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Thanks for the Memories!
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